.. algorithm:: .. summary:: .. relatedalgorithms:: .. properties:: Description ----------- This algorithm performs a smoothing operation over the values in the sample log. The options available are boxcar (moving average) smoothing, FFT smoothing by zeroing, or FFT smoothing with a Butterworth filter. Usage ----- **Example: Smoothing a log with moving average smoothing** .. testcode:: AddLogSmoothed ws = CreateSampleWorkspace() AddTimeSeriesLog(ws,"MyLog","2010-01-01T00:00:00",1.0,DeleteExisting=False) AddTimeSeriesLog(ws,"MyLog","2010-01-01T00:00:10",2.0,DeleteExisting=False) AddTimeSeriesLog(ws,"MyLog","2010-01-01T00:00:20",6.0,DeleteExisting=False) AddTimeSeriesLog(ws,"MyLog","2010-01-01T00:00:30",4.0,DeleteExisting=False) AddLogSmoothed(ws, "MyLog", "BoxCar", Params = "3") for logName in ["MyLog","MyLog_smoothed"]: print("Log: {}".format(logName)) print(ws.getRun().getProperty(logName).valueAsString()) Output: .. testoutput:: AddLogSmoothed :options: +NORMALIZE_WHITESPACE Log: MyLog 2010-Jan-01 00:00:00 1 2010-Jan-01 00:00:10 2 2010-Jan-01 00:00:20 6 2010-Jan-01 00:00:30 4 Log: MyLog_smoothed 2010-Jan-01 00:00:00 1.5 2010-Jan-01 00:00:10 3 2010-Jan-01 00:00:20 4 2010-Jan-01 00:00:30 5 .. categories:: .. sourcelink::