.. _func-DampedBessel: ============ DampedBessel ============ .. index:: DampedBessel Description ----------- A bessel function with damped oscillation that could apply to incommensurate magnetic structures or spin density waves. .. math:: A(t)= A_0e^{-\lambda_\text{L}t}\left( (1-f_L)e^{-\lambda_\text{T}t}J_0(\omega_\mu t + \phi) + f_L\right) where, :math:`A_0` is the amplitude of asymmetry, :math:`J_0(x)` is the Bessel function of the first kind, :math:`\lambda_\text{T}` is the damping of the oscillation, :math:`\lambda_\text{L}` is the dynamic longitudinal spin relaxation rate, :math:`B` (G) is the B-field, and :math:`\phi` is the phase. .. plot:: from mantid.simpleapi import FunctionWrapper import matplotlib.pyplot as plt import numpy as np x = np.arange(0.1,16,0.1) y = FunctionWrapper("DampedBessel") fig, ax=plt.subplots() ax.plot(x, y(x)) ax.set_xlabel('t($\mu$s)') ax.set_ylabel('A(t)') .. attributes:: .. properties:: References ---------- [1] `D.E. MacLaughlin, PRB 89 144419 (2014) `_. .. categories:: .. sourcelink::