.. _func-GaussBessel: =========== GaussBessel =========== .. index:: GaussBessel Description ----------- Bessel function oscillation with Gaussian damp :math:`\frac{1}{3}` component. Example: Spin Density Wave. .. math:: A(t) = A_0\left(\frac{1}{3}+\frac{2}{3}J_0(\omega t + \phi)e^{-\frac{(\sigma t)^2}{2}}\right) where, :math:`N_O` is the count at :math:`t=0` , :math:`\sigma` (MHz) is the Gaussian relaxation rate, :math:`\omega = 2\pi \nu` is the oscillating frequency, :math:`\nu` (MHz) is the oscillation frequency, and :math:`\phi` is the phase. .. plot:: from mantid.simpleapi import FunctionWrapper import matplotlib.pyplot as plt import numpy as np x = np.arange(0.1,16,0.1) y = FunctionWrapper("GaussBessel") fig, ax=plt.subplots() ax.plot(x, y(x)) ax.set_xlabel('t($\mu$s)') ax.set_ylabel('A(t)') .. attributes:: .. properties:: References ---------- [1] `F.L. Pratt, Physica B 289-290, 710 (2000) `_. .. categories:: .. sourcelink::