.. _func-StaticLorentzianKT: ================== StaticLorentzianKT ================== .. index:: StaticLorentzianKT Description ----------- Static Lorentzian Kubo-Toyabe function: .. math:: g_{z}^{L}(t,B_L) = A_0 \{1 - \frac{a}{\omega_{L}}j_1(\omega_{L}t)e^{-at}-\left(\frac{a}{\omega_L}\right)^2(j_o(\omega_{L}t)e^{-at}-1)-\left(1+\left(\frac{a}{\omega_L}\right)^2\right)a\int_{0}^{t}j_0(\omega_{L}\tau)e^{-a\tau}d\tau\} where, :math:`L` refers to Lorentzian, :math:`B_L` refers to the longitudinal field applied to the z-axis, :math:`j_{i}` are the spheical Bessel functions of the First Kind, :math:`\omega_L` is is the precessing angular frequency and its relationship is given by :math:`B_L= \omega_{L} / \gamma_{\mu}`, :math:`\gamma_{\mu}` is the gyromagnetic ratio of muons, and :math:`a (\mu s^{-1})` is the half-width at half maximum of the Lorentzian distribution. .. plot:: from mantid.simpleapi import FunctionWrapper import matplotlib.pyplot as plt import numpy as np x = np.arange(0.1,16,0.1) y = FunctionWrapper("StaticLorentzianKT") fig, ax=plt.subplots() ax.plot(x, y(x)) ax.set_xlabel('t($\mu$s)') ax.set_ylabel('A(t)') .. attributes:: .. properties:: References ---------- [1] `Y. Uemura et al., Phys. Rev. B 31 546 (1985) `_. .. categories:: .. sourcelink::