.. _func-TFMuonium: ========= TFMuonium ========= .. index:: TFMuonium Description ----------- General case TF muonium rotation .. math:: A(t)=\frac{A_0}{4}\{(1+\delta)a_{12}\cos(\omega_{12}+\phi)+ (1-\delta)a_{14}\cos(\omega_{14}+\phi)+(1+\delta)a_{34}\cos(\omega_{34}+\phi)+(1-\delta)a_{23}\cos(\omega_{23}+\phi)\} and, .. math:: \delta= \frac{\chi}{\sqrt{1+\chi^2}}, .. math:: \chi = (g_\mu+g_e)\frac{B}{A}, .. math:: d = \frac{(g_e-g_\mu)}{g_e+g_\mu}, .. math:: E_1=\frac{A}{4}(1+2d\chi) \qquad E_2=\frac{A}{4}(-1+2\sqrt{1+\chi^2}) .. math:: E_3=\frac{A}{4}(1-2d\chi) \qquad E_4=\frac{A}{4}(-1-2\sqrt{1+\chi^2}), .. math:: \omega_{ij}= 2 \pi (E_i - E_j), .. math:: a_{ij}=\frac{1}{(1+(\omega_{ij}/(2\pi f_\text{cut}))^2)}, where, :math:`A_0` is the amplitude, A (MHz) is the isotropic hyperfine coupling constant, :math:`\phi` (rad) is the phase at time :math:`t=0`, :math:`g_\mu = 0.01355342` , the gyromagnetic ratio of muon, :math:`g_e = 2.8024` , the gyromagnetic ratio of electron, and :math:`f_\text{cut} = 10^{32}`. .. plot:: from mantid.simpleapi import FunctionWrapper import matplotlib.pyplot as plt import numpy as np x = np.arange(0.1,16,0.1) y = FunctionWrapper("TFMuonium") fig, ax=plt.subplots() ax.plot(x, y(x)) ax.set_xlabel('t($\mu$s)') ax.set_ylabel('A(t)') .. attributes:: .. properties:: References ---------- [1] `P. Percival, TRIUMF Summer Institute 2011 `_. .. categories:: .. sourcelink::