\(\renewcommand\AA{\unicode{x212B}}\)
This is a Python binding to the C++ class Mantid::Geometry::UnitCell. The methods on this class follow naming conventions for parameters as defined in the International Tables for Crystallography.
mantid.geometry.UnitCell¶a((UnitCell)self) → float :¶Returns the length of the \(a\) direction of the unit cell in \(\rm{\AA}\).
a1((UnitCell)self) → float :¶Returns the length of the \(a_{1} = a\) direction of the unit cell. This is an alias for a().
a2((UnitCell)self) → float :¶Returns the length of the \(a_{2} = b\) direction of the unit cell. This is an alias for b().
a3((UnitCell)self) → float :¶Returns the length of the \(a_{2} = c\) direction of the unit cell. This is an alias for c().
alpha((UnitCell)self) → float :¶Returns the \(\alpha\) angle for this unit cell in degrees.
alpha1((UnitCell)self) → float :¶Returns the \(\alpha_{1} = \alpha\) angle of the unit cell in radians. See also alpha().
alpha2((UnitCell)self) → float :¶Returns the \(\alpha_{2} = \beta\) angle of the unit cell in radians. See also beta().
alpha3((UnitCell)self) → float :¶Returns the \(\alpha_{3} = \gamma\) angle of the unit cell in radians. See also gamma().
alphastar((UnitCell)self) → float :¶Returns the reciprocal \(\alpha\) angle for this unit cell in degrees.
astar((UnitCell)self) → float :¶Returns the length of the reciprocal \(a\) direction for this unit cell in reciprocal \(\rm{\AA}\).
b((UnitCell)self) → float :¶Returns the length of the \(b\) direction of the unit cell in \(\rm{\AA}\).
b1((UnitCell)self) → float :¶Returns the length of the \(b_{1} = a^{*}\) direction of the unit cell. This is an alias for astar().
b2((UnitCell)self) → float :¶Returns the length of the \(b_{2} = b^{*}\) direction of the unit cell. This is an alias for bstar().
b3((UnitCell)self) → float :¶Returns the length of the \(b_{3} = c^{*}\) direction of the unit cell. This is an alias for cstar().
beta((UnitCell)self) → float :¶Returns the \(\beta\) angle for this unit cell in degrees.
beta1((UnitCell)self) → float :¶Returns the \(\beta_{1} = \alpha^{*}\) angle of the unit cell in radians. See also alphastar().
beta2((UnitCell)self) → float :¶Returns the \(\beta_{2} = \beta^{*}\) angle of the unit cell in radians. See also betastar().
beta3((UnitCell)self) → float :¶Returns the \(\beta_{3} = \gamma^{*}\) angle of the unit cell in radians. See also gammastar().
betastar((UnitCell)self) → float :¶Returns the \(\beta^{*}\) angle for this unit cell in degrees.
bstar((UnitCell)self) → float :¶Returns the length of the \(b^{*}\) direction for this unit cell in reciprocal \(\rm{\AA}\).
c((UnitCell)self) → float :¶Returns the length of the \(c\) direction of the unit cell in \(\rm{\AA}\).
cstar((UnitCell)self) → float :¶Returns the length of the \(c^{*}\) direction for this unit cell in reciprocal \(\rm{\AA}\).
d((UnitCell)self, (float)h, (float)k, (float)l) → float :¶Returns \(d\)-spacing for a given H, K, L coordinate in \(\rm{\AA}\).
dstar((UnitCell)self, (float)h, (float)k, (float)l) → float :¶Returns \(d^{*} = 1/d\) for a given H, K, L coordinate in \(\rm{\AA}^{3}\).
errora((UnitCell)self) → float :¶Returns the error in the \(a\) unit cell length.
erroralpha((UnitCell)self[, (int)Unit=0]) → float :¶Returns the error in the \(\alpha\) angle of the unit cell.
errorb((UnitCell)self) → float :¶Returns the error in the \(b\) unit cell length.
errorbeta((UnitCell)self[, (int)Unit=0]) → float :¶Returns the error in \(\beta\) angle of the unit cell.
errorc((UnitCell)self) → float :¶Returns the error in the \(c\) unit cell length.
errorgamma((UnitCell)self[, (int)Unit=0]) → float :¶Returns the error in \(\gamma\) angle of the unit cell.
gamma((UnitCell)self) → float :¶Returns the \(\gamma\) angle for this unit cell in degrees.
gammastar((UnitCell)self) → float :¶Returns the \(\gamma^{*}\) angle for this unit cell in degrees.
getB((UnitCell)self) → numpy.ndarray :¶Returns the \(B\) matrix for this unit cell. This will be in a right-handed coordinate system and using the Busing-Levy convention. This will return a numpy.ndarray with shape (3,3).
getBinv((UnitCell)self) → numpy.ndarray :¶Returns the inverse of the \(B\) matrix for this unit cell.This will return a numpy.ndarray with shape (3,3). See also getB().
getG((UnitCell)self) → numpy.ndarray :¶Returns the metric tensor for the unit cell. This will return a numpy.ndarray with shape (3,3).
getGstar((UnitCell)self) → numpy.ndarray :¶Returns the metric tensor for the reciprocal unit cell. This will return a numpy.ndarray with shape (3,3).
getMaxOrder((UnitCell)self) → int :¶Returns the number of modulation vectors. This will return an int.
getModHKL((UnitCell)self) → numpy.ndarray :¶Returns the \(ModHKL\) matrix for this unit cell. This will be in a right-handed coordinate system and using the Busing-Levy convention. This will return a numpy.ndarray with shape (3,3).
getModVec((UnitCell)self, (int)i) → V3D :¶Returns the ith modulation vector
recAngle((UnitCell)self, (float)h1, (float)k1, (float)l1, (float)h2, (float)k2, (float)l2[, (int)Unit=0]) → float :¶Returns the angle in reciprocal space between vectors given by (\(h_1, k_1, l_1\)) and (\(h_2, k_2, l_2\)) (in degrees or radians). The optional parameter Unit controls the units for the angles, and can have the value of Degrees or Radians. By default Unit = Degrees
recVolume((UnitCell)self) → float :¶Return the volume of the reciprocal unit cell (in \(\rm{\AA}^{-3}\))
recalculateFromGstar((UnitCell)self, (object)NewGstar) → None :¶Recalculate the unit cell parameters from a metric tensor. This method accepts a numpy.ndarray with shape (3,3).
set((UnitCell)self, (float)_a, (float)_b, (float)_c, (float)_alpha, (float)_beta, (float)_gamma[, (int)Unit=0]) → None :¶Set the parameters of the unit cell. Angles can be set in eitherdegrees or radians using the Unit parameter (0 = degrees, 1 = radians)
setError((UnitCell)self, (float)_aerr, (float)_berr, (float)_cerr, (float)_alphaerr, (float)_betaerr, (float)_gammaerr[, (int)Unit=0]) → None :¶Set the errors in the unit cell parameters.
setErrora((UnitCell)self, (float)_aerr) → None :¶Set the error in the length of the \(a\) direction of the unit cell.
setErroralpha((UnitCell)self, (float)_alphaerr[, (int)Unit=0]) → None :¶Set the error in the \(\alpha\) angle of the unit cell.
setErrorb((UnitCell)self, (float)_berr) → None :¶Set the error in the length of the \(b\) direction of the unit cell.
setErrorbeta((UnitCell)self, (float)_betaerr[, (int)Unit=0]) → None :¶Set the error in the \(\beta\) angle of the unit cell using the Unit parameter.
setErrorc((UnitCell)self, (float)_cerr) → None :¶Set the error in the length of the \(c\) direction of the unit cell.
setErrorgamma((UnitCell)self, (float)_gammaerr[, (int)Unit=0]) → None :¶Set the error in the \(\gamma\) angle of the unit cell using the Unit parameter.
setMaxOrder((UnitCell)arg1, (int)arg2) → None :¶Set the maximum order of modulated vectors searched
setModVec1((UnitCell)self, (V3D)vec) → None :¶Set the first modulated structure vector
setModVec2((UnitCell)self, (V3D)vec) → None :¶Set the second modulated structure vector
setModVec3((UnitCell)self, (V3D)vec) → None :¶Set the third modulated structure vector
seta((UnitCell)self, (float)_a) → None :¶Set the length of the \(a\) direction of the unit cell.
setalpha((UnitCell)self, (float)_alpha[, (int)Unit=0]) → None :¶Set the \(\alpha\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit parameter.
setb((UnitCell)self, (float)_b) → None :¶Set the length of the \(b\) direction of the unit cell.
setbeta((UnitCell)self, (float)_beta[, (int)Unit=0]) → None :¶Set the \(\beta\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit parameter.
setc((UnitCell)self, (float)_c) → None :¶Set the length of the \(c\) direction of the unit cell.
setgamma((UnitCell)self, (float)_gamma[, (int)Unit=0]) → None :¶Set the \(\gamma\) angle of the unit cell. The angle can be set either in degrees or radians using the Unit parameter.
volume((UnitCell)self) → float :¶Return the volume of the unit cell (in \(\rm{\AA}{^3}\))