\(\renewcommand\AA{\unicode{x212B}}\)
LRReductionWithReference v1¶
Summary¶
REFL reduction using a reference measurement for normalization
Properties¶
| Name | Direction | Type | Default | Description | 
|---|---|---|---|---|
| RunNumbers | Input | str list | List of run numbers to process | |
| InputWorkspace | Input | Optionally, we can provide a workspace directly | ||
| NormalizationRunNumber | Input | long | 0 | Run number of the normalization run to use | 
| SignalPeakPixelRange | Input | long list | 123,137 | Pixel range defining the data peak | 
| SubtractSignalBackground | Input | boolean | True | If true, the background will be subtracted from the data peak | 
| SignalBackgroundPixelRange | Input | long list | 123,137 | Pixel range defining the background. Default:(123,137) | 
| NormFlag | Input | boolean | True | If true, the data will be normalized | 
| NormPeakPixelRange | Input | long list | 127,133 | Pixel range defining the normalization peak | 
| SubtractNormBackground | Input | boolean | True | If true, the background will be subtracted from the normalization peak | 
| NormBackgroundPixelRange | Input | long list | 127,137 | Pixel range defining the background for the normalization | 
| LowResDataAxisPixelRangeFlag | Input | boolean | True | If true, the low resolution direction of the data will be cropped according to the lowResDataAxisPixelRange property | 
| LowResDataAxisPixelRange | Input | long list | 115,210 | Pixel range to use in the low resolution direction of the data | 
| LowResNormAxisPixelRangeFlag | Input | boolean | True | If true, the low resolution direction of the normalization run will be cropped according to the LowResNormAxisPixelRange property | 
| LowResNormAxisPixelRange | Input | long list | 115,210 | Pixel range to use in the low resolution direction of the normalizaion run | 
| TOFRange | Input | dbl list | 0,340000 | TOF range to use | 
| TOFRangeFlag | Input | boolean | True | If true, the TOF will be cropped according to the TOF range property | 
| QMin | Input | number | 0.05 | Minimum Q-value | 
| QStep | Input | number | 0.02 | Step size in Q. Enter a negative value to get a log scale | 
| AngleOffset | Input | number | 0 | angle offset (degrees) | 
| AngleOffsetError | Input | number | 0 | Angle offset error (degrees) | 
| OutputWorkspace | Output | Mandatory | Output workspace | |
| ApplyScalingFactor | Input | boolean | True | If true, the scaling from Scaling Factor file will be applied | 
| ScalingFactorFile | Input | string | Scaling factor configuration file | |
| SlitTolerance | Input | number | 0.02 | Tolerance for matching slit positions | 
| SlitsWidthFlag | Input | boolean | True | Looking for perfect match of slits width when using Scaling Factor file | 
| IncidentMediumSelected | Input | string | Incident medium used for those runs | |
| GeometryCorrectionFlag | Input | boolean | False | Use or not the geometry correction | 
| FrontSlitName | Input | string | S1 | Name of the front slit | 
| BackSlitName | Input | string | Si | Name of the back slit | 
| TOFSteps | Input | number | 40 | TOF step size | 
| CropFirstAndLastPoints | Input | boolean | True | If true, we crop the first and last points | 
| ApplyPrimaryFraction | Input | boolean | False | If true, the primary fraction correction will be applied | 
| PrimaryFractionRange | Input | long list | 117,197 | Pixel range to use for calculating the primary fraction correction. | 
| Refl1DModelParameters | Input | string | JSON string for Refl1D theoretical model parameters | 
Description¶
The workflow proceeds as follows:
- Using the algorithm LiquidsReflectometryReduction, reduce the normalization run for a standard using normalization input parameters: \(I^{standard}(Q)\) 
- With the input Refl1DModelParameters JSON string, calculate the model reflectivity for the normalization run to produce the theoretical reflectivity of the standard. Uses the refl1d [1] package: \(R_{theory}^{standard}(Q)\) 
- The reduced normalization run from step (1), \(I^{standard}(Q)\), is then divided by the model reflectivity of the same material from step (2), \(R_{theory}^{standard}(Q)\), to produce the incident flux for normalzing the sample run: \(I_{norm}(Q) = I^{standard}(Q) / R_{theory}^{standard}(Q)\). 
- Using the algorithm LiquidsReflectometryReduction, reduce the sample run with the normalization turned OFF (i.e. NormFlag set to False): \(I^{sample}(Q)\) 
- Calculate the sample reflectivity by dividing the sample reduction of step (4), \(I^{sample}(Q)\), by the normalization in step (3), thus \(R^{sample}(Q) = I^{sample}(Q) / I_{norm}(Q)\). 
References¶
Categories: AlgorithmIndex | Reflectometry\SNS
Source¶
Python: LRReductionWithReference.py