\(\renewcommand\AA{\unicode{x212B}}\)
Voigt¶
Description¶
A Voigt function is a convolution between a Lorentzian and Gaussian and is defined as:
where
- X - Normalized line separation width; 
- Y - Normalized collision separation width. 
Generally, the Voigt function involves a numerical integral and is therefore a computational intensive task. However, several approximations to the Voigt function exist making it palatable for fitting in a least-squares algorithm. The approximation used here is described in
- A.B. McLean, C.E.J. Mitchell, and D.M. Swanston. Implementation of an Efficient Analytical Approximation to the Voigt Function for Photoemission Lineshape Analysis. Journal of Electron Spectroscopy and Related Phenomena 69.2 (1994): 125–132 doi:10.1016/0368-2048(94)02189-7 
The approximation uses a combination of 4 Lorentzians in two variables to generate good approximation to the true function.
Properties (fitting parameters)¶
| Name | Default | Description | 
|---|---|---|
| LorentzAmp | 0.0 | Value of the Lorentzian amplitude | 
| LorentzPos | 0.0 | Position of the Lorentzian peak | 
| LorentzFWHM | 0.0 | Value of the full-width half-maximum for the Lorentzian | 
| GaussianFWHM | 0.0 | Value of the full-width half-maximum for the Gaussian | 
Categories: FitFunctions | General
Source¶
C++ header: Voigt.h
C++ source: Voigt.cpp