Source code for mantidimaging.gui.windows.spectrum_viewer.presenter

# Copyright (C) 2021 ISIS Rutherford Appleton Laboratory UKRI
# SPDX - License - Identifier: GPL-3.0-or-later
from __future__ import annotations

import csv
from enum import Enum
from functools import partial
from typing import TYPE_CHECKING

from logging import getLogger

import numpy as np
from PyQt5.QtCore import QSignalBlocker, QTimer, Qt

from mantidimaging.core.utility.sensible_roi import SensibleROI
from mantidimaging.gui.dialogs.async_task import start_async_task_view, TaskWorkerThread
from mantidimaging.gui.mvp_base import BasePresenter
from mantidimaging.gui.windows.spectrum_viewer.model import SpectrumViewerWindowModel, SpecType, ROI_RITS, ErrorMode, \
    ToFUnitMode, allowed_modes
from mantidimaging.core.fitting.fitting_functions import FittingRegion, BadFittingRoiError

if TYPE_CHECKING:
    from mantidimaging.gui.windows.spectrum_viewer.view import SpectrumViewerWindowView  # pragma: no cover
    from mantidimaging.gui.windows.main.view import MainWindowView  # pragma: no cover
    from mantidimaging.gui.windows.spectrum_viewer.spectrum_widget import SpectrumROI
    from mantidimaging.core.data import ImageStack
    from uuid import UUID
    from PyQt5.QtWidgets import QAction

LOG = getLogger(__name__)


[docs] class ExportMode(Enum): # Needs to match GUI tab order ROI_MODE = 0 IMAGE_MODE = 1
MODE_TO_LABEL = {v["mode"]: (k, v["label"]) for k, v in allowed_modes.items()}
[docs] class SpectrumViewerWindowPresenter(BasePresenter): """ The presenter for the spectrum viewer window. This presenter is responsible for handling user interaction with the view and updating the model and view accordingly to look after the state of the window. """ view: SpectrumViewerWindowView model: SpectrumViewerWindowModel spectrum_mode: SpecType = SpecType.SAMPLE current_stack_uuid: UUID | None = None current_norm_stack_uuid: UUID | None = None export_mode: ExportMode initial_sample_change: bool = True changed_roi: SpectrumROI stop_next_chunk = False image_nan_mask_dict: dict[str, np.ma.MaskedArray] = {} roi_to_process_queue: dict[str, SpectrumROI] = {} def __init__(self, view: SpectrumViewerWindowView, main_window: MainWindowView): super().__init__(view) self.view = view self.main_window = main_window self.model = SpectrumViewerWindowModel(self) self.export_mode = ExportMode.ROI_MODE self.main_window.stack_changed.connect(self.handle_stack_modified) self.handle_roi_change_timer = QTimer() self.handle_roi_change_timer.setSingleShot(True) self.handle_roi_change_timer.timeout.connect(self.handle_roi_moved)
[docs] def handle_stack_modified(self) -> None: """ Called when an image stack is modified somewhere else in MI, for example in the operations window """ if self.current_stack_uuid: self.model.set_stack(self.main_window.get_stack(self.current_stack_uuid)) else: return normalise_uuid = self.view.get_normalise_stack() if normalise_uuid is not None: try: norm_stack: ImageStack | None = self.main_window.get_stack(normalise_uuid) except RuntimeError: norm_stack = None self.model.set_normalise_stack(norm_stack) self.model.set_tof_unit_mode_for_stack() self.model.spectrum_cache.clear() self.model.get_spectrum(SensibleROI.from_list([0, 0, *self.model.get_image_shape()]), self.spectrum_mode, self.view.shuttercount_norm_enabled()) self.reset_units_menu() self.handle_tof_unit_change() self.show_new_sample() self.redraw_all_rois()
[docs] def initial_roi_calc(self): spectrum = self.model.get_spectrum(SensibleROI.from_list([0, 0, *self.model.get_image_shape()]), self.spectrum_mode, self.view.shuttercount_norm_enabled()) self.view.set_spectrum("roi", spectrum) self.set_default_fitting_region()
[docs] def handle_sample_change(self, uuid: UUID | None) -> None: """ Called when the stack has been changed in the stack selector. """ self.view.roi_form.exportTabs.setDisabled(uuid is None) if uuid == self.current_stack_uuid: return else: self.current_stack_uuid = uuid new_dataset_id = self.get_dataset_id_for_stack(uuid) if new_dataset_id: self.auto_find_flat_stack(new_dataset_id) else: self.view.current_dataset_id = None self.do_remove_roi() self.view.table_view.clear_table() self.model.spectrum_cache.clear() if uuid is None: self.model.set_stack(None) self.view.clear() self.view.tof_mode_select_group.setEnabled(False) return self.model.set_stack(self.main_window.get_stack(uuid)) self.model.get_spectrum(SensibleROI.from_list([0, 0, *self.model.get_image_shape()]), self.spectrum_mode, self.view.shuttercount_norm_enabled()) self.model.set_tof_unit_mode_for_stack() self.reset_units_menu() self.handle_tof_unit_change() normalise_uuid = self.view.get_normalise_stack() if normalise_uuid is not None: try: norm_stack: ImageStack | None = self.main_window.get_stack(normalise_uuid) except RuntimeError: norm_stack = None self.model.set_normalise_stack(norm_stack) self.do_add_roi() self.add_rits_roi() self.view.set_normalise_error(self.model.normalise_issue()) self.set_shuttercount_error() self.show_new_sample() self.view.on_visibility_change() self.view.setup_roi_properties_spinboxes()
[docs] def reset_units_menu(self) -> None: if self.model.tof_data.size == 0: self.view.tof_mode_select_group.setEnabled(False) self.view.experimentSetupGroupBox.setEnabled(False) self.model.tof_mode = ToFUnitMode.IMAGE_NUMBER self.change_selected_menu_option("Image Index") self.view.tof_mode_select_group.setEnabled(False) else: self.view.tof_mode_select_group.setEnabled(True) self.view.experimentSetupGroupBox.setEnabled(True)
[docs] def handle_normalise_stack_change(self, normalise_uuid: UUID | None) -> None: if normalise_uuid == self.current_norm_stack_uuid: return else: self.current_norm_stack_uuid = normalise_uuid if normalise_uuid is None: self.model.set_normalise_stack(None) return self.model.set_normalise_stack(self.main_window.get_stack(normalise_uuid)) self.view.set_normalise_error(self.model.normalise_issue()) self.set_shuttercount_error() if self.view.normalisation_enabled(): self.redraw_all_rois() self.update_displayed_image(autoLevels=True)
[docs] def auto_find_flat_stack(self, new_dataset_id: UUID) -> None: if self.view.current_dataset_id != new_dataset_id: self.view.current_dataset_id = new_dataset_id new_dataset = self.main_window.get_dataset(new_dataset_id) if new_dataset is not None: if new_dataset.flat_before is not None: self.view.try_to_select_relevant_normalise_stack(new_dataset.flat_before.name) elif new_dataset.flat_after is not None: self.view.try_to_select_relevant_normalise_stack(new_dataset.flat_after.name)
[docs] def get_dataset_id_for_stack(self, stack_id: UUID | None) -> UUID | None: return None if stack_id is None else self.main_window.get_dataset_id_from_stack_uuid(stack_id)
[docs] def update_displayed_image(self, autoLevels: bool = True) -> None: """Fetches the correct image (normalized or not) and updates the display.""" averaged_image = (self.model.get_normalized_averaged_image() if self.view.normalisation_enabled() else self.model.get_averaged_image()) if averaged_image is None: image_shape = self.model.get_image_shape() averaged_image = np.zeros(image_shape, dtype=np.float32) self.view.set_image(averaged_image, autoLevels=autoLevels) self.view.fittingDisplayWidget.update_image(averaged_image)
[docs] def show_new_sample(self) -> None: """ Show the new sample in the view and update the spectrum and image view accordingly. Resets the ROIs. """ averaged_image = self.model.get_averaged_image() assert averaged_image is not None self.update_displayed_image(autoLevels=True) self.view.spectrum_widget.spectrum_plot_widget.add_range(*self.model.tof_plot_range) self.view.spectrum_widget.spectrum_plot_widget.set_image_index_range_label(*self.model.tof_range) self.view.auto_range_image() self.view.set_roi_properties()
[docs] def handle_range_slide_moved(self, tof_range: tuple[float, float] | tuple[int, int]) -> None: self.model.tof_plot_range = tof_range if self.model.tof_mode == ToFUnitMode.IMAGE_NUMBER: self.model.tof_range = (int(tof_range[0]), int(tof_range[1])) else: image_index_min = np.abs(self.model.tof_data - tof_range[0]).argmin() image_index_max = np.abs(self.model.tof_data - tof_range[1]).argmin() self.model.tof_range = tuple(sorted((image_index_min, image_index_max))) self.view.spectrum_widget.spectrum_plot_widget.set_image_index_range_label(*self.model.tof_range) self.view.spectrum_widget.spectrum_plot_widget.set_tof_range_label(*self.model.tof_plot_range) self.update_displayed_image(autoLevels=False) LOG.info("Projection range changed: ToF Range = %s", self.model.tof_range)
[docs] def handle_notify_roi_moved(self, roi: SpectrumROI) -> None: self.changed_roi = roi self.view.roi_form.roi_properties_widget.update_roi_limits(roi.as_sensible_roi()) run_thread_check = not bool(self.roi_to_process_queue) self.roi_to_process_queue[self.changed_roi.name] = self.changed_roi spectrum = self.view.spectrum_widget.spectrum_data_dict[roi.name] if spectrum is not None: self.image_nan_mask_dict[roi.name] = np.ma.asarray(np.full(spectrum.shape[0], np.nan)) self.clear_spectrum() self.view.show_visible_spectrums() self.view.spectrum_widget.spectrum.update() if run_thread_check: if not self.handle_roi_change_timer.isActive(): self.handle_roi_change_timer.start(500) self.update_roi_on_fitting_thumbnail()
[docs] def run_spectrum_calculation(self): roi_name = list(self.roi_to_process_queue.keys())[0] roi = self.roi_to_process_queue[roi_name] chunk_size = 100 if chunk_size > 0: nanInds = np.argwhere(np.isnan(self.image_nan_mask_dict[roi_name])) chunk_start = int(nanInds[0, 0]) if len(nanInds) > chunk_size: chunk_end = int(nanInds[chunk_size, 0]) else: chunk_end = int(nanInds[-1, 0]) + 1 else: chunk_start, chunk_end = (0, -1) spectrum = self.model.get_spectrum(roi.as_sensible_roi(), self.spectrum_mode, self.view.shuttercount_norm_enabled(), chunk_start, chunk_end) for i in range(len(spectrum)): np.put(self.view.spectrum_widget.spectrum_data_dict[roi_name], chunk_start + i, spectrum[i]) if np.isnan(spectrum[i]): self.image_nan_mask_dict[roi_name][chunk_start + i] = np.ma.masked else: np.put(self.image_nan_mask_dict[roi_name], chunk_start + i, spectrum[i])
[docs] def handle_roi_moved(self) -> None: """ Handle changes to any ROI position and size. """ self.thread = TaskWorkerThread() self.thread.task_function = self.run_spectrum_calculation self.thread.finished.connect(lambda: self.thread_cleanup(self.thread)) self.thread.start()
[docs] def thread_cleanup(self, thread: TaskWorkerThread) -> None: if thread.error is not None: raise thread.error self.view.show_visible_spectrums() self.view.spectrum_widget.spectrum.update() if np.isnan(self.image_nan_mask_dict[list(self.roi_to_process_queue.keys())[0]]).any(): self.try_next_mean_chunk() else: self.roi_to_process_queue.pop(list(self.roi_to_process_queue.keys())[0]) if len(self.roi_to_process_queue) > 0: self.try_next_mean_chunk() else: self.view.show_visible_spectrums() self.view.spectrum_widget.spectrum.update() roi = self.changed_roi.as_sensible_roi() coords = (roi.left, roi.top, roi.right, roi.bottom) if coords != getattr(self, "_last_logged_roi_coords", None): LOG.info("ROI moved: name=%s, new coords=Left: %d, Top: %d, Right: %d, Bottom: %d", self.changed_roi.name, *coords) self._last_logged_roi_coords = coords
[docs] def try_next_mean_chunk(self) -> None: if list(self.roi_to_process_queue.keys())[0] not in self.view.spectrum_widget.spectrum_data_dict.keys(): return spectrum = self.image_nan_mask_dict[list(self.roi_to_process_queue.keys())[0]] if spectrum is not None: if np.isnan(spectrum).any(): if not self.handle_roi_change_timer.isActive(): self.handle_roi_change_timer.start(10) else: self.model.store_spectrum(self.changed_roi.as_sensible_roi(), self.spectrum_mode, self.view.shuttercount_norm_enabled(), spectrum)
[docs] def handle_roi_clicked(self, roi: SpectrumROI) -> None: if not roi.name == ROI_RITS: self.view.table_view.select_roi(roi.name) self.view.set_roi_properties()
[docs] def clear_spectrum(self): self.view.spectrum_widget.spectrum_data_dict[self.changed_roi.name] = (np.full( self.model.get_number_of_images_in_stack(), np.nan))
[docs] def update_roi_on_fitting_thumbnail(self) -> None: roi_widget = self.view.spectrum_widget.roi_dict[self.view.roiSelectionWidget.current_roi_name] self.view.fittingDisplayWidget.show_roi_on_thumbnail_from_widget(roi_widget)
@property def fitting_spectrum(self) -> np.ndarray: selected_fitting_roi = self.view.roiSelectionWidget.current_roi_name if (spectrum_data := self.view.spectrum_widget.spectrum_data_dict[selected_fitting_roi]) is not None: return spectrum_data raise RuntimeError("Fitting spectrum not calculated")
[docs] def set_default_fitting_region(self) -> None: self.view.fittingDisplayWidget.set_default_region_if_needed(self.model.tof_data, self.fitting_spectrum)
[docs] def update_fitting_function(self, fitting_obj) -> None: fitting_func = fitting_obj() self.model.fitting_engine.set_fitting_model(fitting_func) LOG.info("Spectrum Viewer: Fit function set to %s", fitting_func.__class__.__name__) self.setup_fitting_model()
[docs] def redraw_spectrum(self, name: str) -> None: """ Redraw the spectrum with the given name """ roi = self.view.spectrum_widget.get_roi(name) spectrum = self.model.get_spectrum(roi, self.spectrum_mode, self.view.shuttercount_norm_enabled()) self.view.set_spectrum(name, spectrum)
[docs] def redraw_all_rois(self) -> None: """ Redraw all ROIs and spectrum plots """ for roi_name, roi_widget in self.view.spectrum_widget.roi_dict.items(): if roi_widget.isVisible(): self.redraw_spectrum(roi_name)
[docs] def handle_roi_name_change(self, old_name: str, new_name: str) -> None: self.view.spectrum_widget.rename_roi(old_name, new_name) self.view.set_roi_properties() self.view.roiSelectionWidget.update_roi_list(self.get_roi_names())
[docs] def handle_button_enabled(self) -> None: """ Enable the export button if the current stack is not None and normalisation is valid """ has_stack = self.model.has_stack() normalisation_on = self.view.normalisation_enabled() normalisation_no_error = (normalisation_on and self.model.normalise_issue() == "") or not normalisation_on self.view.roi_form.exportButton.setEnabled(has_stack and normalisation_no_error) self.view.roi_form.exportButtonRITS.setEnabled(has_stack and normalisation_on and normalisation_no_error) self.view.roi_form.addBtn.setEnabled(has_stack) self.view.normalise_ShutterCount_CheckBox.setEnabled(has_stack and normalisation_on and normalisation_no_error) if not self.view.normalise_ShutterCount_CheckBox.isEnabled(): self.view.normalise_ShutterCount_CheckBox.setChecked(False)
[docs] def handle_export_csv(self) -> None: path = self.view.get_csv_filename() if not path: return path = path.with_suffix(".csv") if path.suffix != ".csv" else path rois = {roi.name: roi.as_sensible_roi() for roi in self.view.spectrum_widget.roi_dict.values()} self.model.save_csv( path, rois, normalise=self.spectrum_mode == SpecType.SAMPLE_NORMED, normalise_with_shuttercount=self.view.shuttercount_norm_enabled(), ) LOG.info("CSV export successful: file saved to '%s'", path)
[docs] def handle_rits_export(self) -> None: """ Handle the export of the current spectrum to a RITS file format """ error_mode = ErrorMode.get_by_value(self.view.transmission_error_mode) if self.view.image_output_mode == "2D Binned": path = self.view.get_rits_export_directory() if path is None: LOG.debug("No path selected, aborting export") return roi = self.view.spectrum_widget.get_roi(ROI_RITS) run_function = partial( self.model.save_rits_images, path, error_mode, self.view.bin_size, self.view.bin_step, roi, normalise=self.view.shuttercount_norm_enabled(), ) start_async_task_view(self.view, run_function, self._async_save_done) else: path = self.view.get_rits_export_filename() if path is None: LOG.debug("No path selected, aborting export") return if path and path.suffix != ".dat": path = path.with_suffix(".dat") roi = self.view.spectrum_widget.get_roi(ROI_RITS) self.model.save_single_rits_spectrum(path, error_mode, roi)
def _async_save_done(self, task: TaskWorkerThread) -> None: if task.error is not None: self.view.show_error_dialog(f"Operation failed: {task.error}") LOG.error("Fit failed: %s", task.error)
[docs] def handle_enable_normalised(self, enabled: bool) -> None: if enabled: self.spectrum_mode = SpecType.SAMPLE_NORMED else: self.spectrum_mode = SpecType.SAMPLE self.redraw_all_rois() self.view.display_normalise_error() self.update_displayed_image(autoLevels=True)
[docs] def set_shuttercount_error(self, enabled: bool = False) -> None: """ Set ShutterCount error message when a valid normalisation stack has been selected and shuttercount correction has been toggled on and redraw all ROIs to ensure the spectrum is updated when ShutterCount correction is toggled between enabled and disabled states. """ if self.spectrum_mode is SpecType.SAMPLE_NORMED: self.view.set_shuttercount_error(self.model.shuttercount_issue() if enabled else "") self.redraw_all_rois()
[docs] def get_roi_names(self) -> list[str]: """ @return: list of ROI names """ return list(self.view.spectrum_widget.roi_dict.keys())
[docs] def do_add_roi(self) -> None: """ Add a new ROI to the spectrum """ roi_name = self.model.roi_name_generator() if roi_name in self.view.spectrum_widget.roi_dict: raise ValueError(f"ROI name already exists: {roi_name}") height, width = self.model.get_image_shape() roi = SensibleROI.from_list([0, 0, width, height]) LOG.info(f"ROI created: name={roi_name}, coords=({roi.left}, {roi.right}, {roi.top}, {roi.bottom})") self.view.spectrum_widget.add_roi(roi, roi_name) spectrum = self.model.get_spectrum(roi, self.spectrum_mode, self.view.shuttercount_norm_enabled()) self.view.set_spectrum(roi_name, spectrum) self.view.auto_range_image() self.do_add_roi_to_table(roi_name) self.view.update_roi_dropdown()
[docs] def change_roi_colour(self, roi_name: str, new_colour: tuple[int, int, int, int]) -> None: """ Change the colour of a given ROI in both the spectrum widget and the table. @param roi_name: Name of the ROI to change color. @param new_colour: The new color for the ROI. """ if roi_name in self.view.spectrum_widget.roi_dict: self.view.spectrum_widget.roi_dict[roi_name].colour = new_colour self.view.table_view.update_roi_color(roi_name, new_colour) self.view.on_visibility_change()
[docs] def add_rits_roi(self) -> None: """ Add the RITS ROI to the spectrum widget and initialize it with default dimensions. """ roi = SensibleROI.from_list([0, 0, *self.model.get_image_shape()]) self.view.spectrum_widget.add_roi(roi, ROI_RITS) self.view.set_spectrum(ROI_RITS, self.model.get_spectrum(roi, self.spectrum_mode, self.view.shuttercount_norm_enabled())) self.view.set_roi_visibility_flags(ROI_RITS, visible=False)
[docs] def do_add_roi_to_table(self, roi_name: str) -> None: """ Add a given ROI to the table by ROI name @param roi_name: Name of the ROI to add """ roi_colour = self.view.spectrum_widget.roi_dict[roi_name].colour self.view.add_roi_table_row(roi_name, roi_colour)
[docs] def do_remove_roi(self, roi_name: str | None = None) -> None: """ Remove a given ROI from the table by ROI name or all ROIs from the table if no name is passed as an argument @param roi_name: Name of the ROI to remove """ if roi_name is None: for name in list(self.get_roi_names()): self.view.spectrum_widget.remove_roi(name) LOG.info(f"ROI removed: name={name}") self.view.spectrum_widget.roi_dict.clear() self.model.remove_all_roi() else: self.view.spectrum_widget.remove_roi(roi_name) LOG.info(f"ROI removed: name={roi_name}") self.view.update_roi_dropdown()
[docs] def handle_export_tab_change(self, index: int) -> None: self.export_mode = ExportMode(index) self.view.on_visibility_change()
[docs] def handle_tof_unit_change(self) -> None: self.model.set_relevant_tof_units() self.update_unit_labels_and_menus() self.refresh_spectrum_plot()
[docs] def handle_tof_unit_change_via_menu(self, unit_name: str) -> None: self.view.tof_units_mode = unit_name self.model.tof_mode = allowed_modes[unit_name]["mode"] self.handle_tof_unit_change()
[docs] def update_unit_labels_and_menus(self) -> None: """ Update all unit-related axis and range labels, as well as unit selection menus in both the main spectrum plot in the image tab and the fitting tab. """ unit_mode = self.model.tof_mode tof_data = self.model.tof_data unit_name, axis_label = MODE_TO_LABEL.get(unit_mode, ("Image Index", allowed_modes["Image Index"]["label"])) # Update axis labels self.view.spectrum_widget.spectrum_plot_widget.set_tof_axis_label(axis_label) self.view.fittingDisplayWidget.spectrum_plot.spectrum.setLabel('bottom', text=axis_label) # Update range labels if tof_data.size > 0: range_min, range_max = float(np.min(tof_data)), float(np.max(tof_data)) self.view.spectrum_widget.spectrum_plot_widget.set_tof_range_label(range_min, range_max) self.view.fittingDisplayWidget.spectrum_plot.set_tof_range_label(range_min, range_max) self.view.fittingDisplayWidget.spectrum_plot.set_unit_range_label(range_min, range_max, axis_label) self.view.sync_unit_menus(unit_name)
[docs] def refresh_spectrum_plot(self) -> None: self.view.show_visible_spectrums() self.view.spectrum_widget.spectrum_plot_widget.add_range(*self.model.tof_plot_range) self.view.spectrum_widget.spectrum_plot_widget.set_image_index_range_label(*self.model.tof_range) self.view.auto_range_image()
[docs] def handle_experiment_setup_properties_change(self) -> None: self.model.units.target_to_camera_dist = self.view.experimentSetupFormWidget.flight_path self.model.units.data_offset = self.view.experimentSetupFormWidget.time_delay * 1e-6 self.model.set_relevant_tof_units() self.refresh_spectrum_plot()
[docs] def change_selected_menu_option(self, opt: str) -> None: for action in self.view.tof_mode_select_group.actions(): with QSignalBlocker(action): if action.objectName() == opt: self.check_action(action, True) else: self.check_action(action, False)
[docs] def do_adjust_roi(self) -> None: new_roi = self.view.roi_form.roi_properties_widget.to_roi() roi_name = self.view.table_view.current_roi_name self.view.spectrum_widget.adjust_roi(new_roi, roi_name) self.handle_notify_roi_moved(self.view.spectrum_widget.roi_dict[roi_name])
[docs] @staticmethod def check_action(action: QAction, param: bool) -> None: action.setChecked(param)
[docs] def setup_fitting_model(self) -> None: param_names = self.model.fitting_engine.get_parameter_names() self.view.scalable_roi_widget.set_parameters(param_names) self.view.exportDataTableWidget.set_parameters(param_names)
[docs] def get_init_params_from_roi(self) -> None: fitting_region = self.view.get_fitting_region() init_params = self.model.fitting_engine.get_init_params_from_roi(fitting_region) self.view.scalable_roi_widget.set_parameter_values(init_params) self.view.fittingDisplayWidget.set_plot_mode("initial") self.show_initial_fit() roi_name = self.view.roiSelectionWidget.current_roi_name self.view.exportDataTableWidget.update_roi_data(roi_name=roi_name, params=init_params, status="Initial")
def _plot_initial_fit(self) -> None: init_params = self.view.scalable_roi_widget.get_initial_param_values() xvals = self.model.tof_data init_fit = self.model.fitting_engine.model.evaluate(xvals, init_params) self.view.fittingDisplayWidget.show_fit_line(xvals, init_fit, color=(128, 128, 128), label="initial", initial=True)
[docs] def on_initial_params_edited(self) -> None: """ Handles updates when the initial fitting parameters are edited. If the initial fit is visible, updates the plot with the new initial fit. Otherwise, re-runs the fit with the updated parameters, updates the fitted parameter values, and displays the new fit result. """ if self.view.fittingDisplayWidget.is_initial_fit_visible(): self._plot_initial_fit() else: init_params = self.view.scalable_roi_widget.get_initial_param_values() roi_name = self.view.roiSelectionWidget.current_roi_name roi = self.view.spectrum_widget.get_roi(roi_name) spectrum = self.model.get_spectrum(roi, self.spectrum_mode) xvals = self.model.tof_data result = self.model.fitting_engine.find_best_fit(xvals, spectrum, init_params) self.view.scalable_roi_widget.set_fitted_parameter_values(result) self.show_fit(list(result.values()))
[docs] def show_initial_fit(self) -> None: """ Displays the initial fit curve on the fitting display widget. Retrieves current TOF data and the initial parameter values from the view and evaluates the fitting model using these parameters to generate the initial fit curve. """ xvals = self.model.tof_data init_params = self.view.scalable_roi_widget.get_initial_param_values() init_fit = self.model.fitting_engine.model.evaluate(xvals, init_params) self.view.fittingDisplayWidget.show_fit_line(xvals, init_fit, color=(128, 128, 128), label="initial", initial=True)
[docs] def run_region_fit(self) -> None: result = self.fit_single_region(self.fitting_spectrum, self.view.get_fitting_region(), self.model.tof_data, self.view.scalable_roi_widget.get_initial_param_values()) self.view.scalable_roi_widget.set_fitted_parameter_values(result) self.show_fit(list(result.values())) roi_name = self.view.roiSelectionWidget.current_roi_name self.view.exportDataTableWidget.update_roi_data(roi_name=roi_name, params=result, status="Fitted") LOG.info("Fit completed for ROI=%s, params=%s", roi_name, result)
[docs] def fit_single_region(self, spectrum: np.ndarray, fitting_region: FittingRegion, tof_data: np.ndarray, init_params: list[float]) -> dict[str, float]: fitting_slice = slice(*np.searchsorted(tof_data, (fitting_region[0], fitting_region[1]))) xvals = tof_data[fitting_slice] yvals = spectrum[fitting_slice] return self.model.fitting_engine.find_best_fit(xvals, yvals, init_params)
[docs] def fit_all_regions(self): init_params = self.view.scalable_roi_widget.get_initial_param_values() for roi_name, roi_widget in self.view.spectrum_widget.roi_dict.items(): if roi_name == "rits_roi": continue roi = roi_widget.as_sensible_roi() spectrum = self.model.get_spectrum(roi, self.spectrum_mode, self.view.shuttercount_norm_enabled()) fitting_region = self.view.get_fitting_region() try: result = self.fit_single_region(spectrum, fitting_region, self.model.tof_data, init_params) status = "Fitted" except (ValueError, BadFittingRoiError) as e: LOG.warning(f"Failed to find fit for {roi_name}: {e}") result = {param_name: 0 for param_name in self.model.fitting_engine.get_parameter_names()} status = "Failed" self.view.exportDataTableWidget.update_roi_data(roi_name=roi_name, params=result, status=status) LOG.info("Fit completed for ROI=%s, params=%s", roi_name, result)
[docs] def show_fit(self, params: list[float]) -> None: xvals = self.model.tof_data fit = self.model.fitting_engine.model.evaluate(xvals, params) self.view.fittingDisplayWidget.show_fit_line(xvals, fit, color=(0, 128, 255), label="fit", initial=False)
[docs] def handle_export_table(self) -> None: """ Export the ROI fitting results table to CSV. """ path = self.view.get_csv_filename() if not path: LOG.warning("Export cancelled: no file path selected.") return path = path.with_suffix(".csv") if path.suffix != ".csv" else path selected_roi = self.view.exportSettingsWidget.selected_area() export_format = self.view.exportSettingsWidget.selected_format() model = self.view.exportDataTableWidget.model LOG.info("User initiated export: format=%s, area=%s, path=%s", export_format, selected_roi, path) with open(path, 'w', newline='') as file: writer = csv.writer(file) headers = [model.headerData(i, Qt.Horizontal) for i in range(model.columnCount())] writer.writerow(headers) for row in range(model.rowCount()): roi_name = model.item(row, 0).text() if selected_roi != "All" and roi_name != selected_roi: continue row_data = [model.item(row, col).data() for col in range(model.columnCount())] writer.writerow(row_data)