mantidimaging.core.fitting.fitting_engine module#
- class mantidimaging.core.fitting.fitting_engine.FittingEngine(model: BaseFittingFunction)[source]#
Bases:
object- find_best_fit(xdata: ndarray, ydata: ndarray, initial_params: list[float], params_bounds: list[tuple[float | None, float | None]] | None = None) tuple[dict[str, float], float, float][source]#
Fit the model to the given spectrum using unweighted least squares.
- Returns:
fit_params: dictionary of parameter names → fitted values
rss: residual sum of squares (Σ(residual²))
reduced_rss: rss / degrees of freedom, where DoF = N - p
- Notes:
Uses the Nelder–Mead minimizer on the unweighted residuals.
- set_fitting_model(model: BaseFittingFunction) None[source]#