mantidimaging.core.reconstruct.astra_recon module#
- class mantidimaging.core.reconstruct.astra_recon.AstraRecon[source]#
Bases:
BaseRecon
- static find_cor(images: ImageStack, slice_idx: int, start_cor: float | ndarray, recon_params: ReconstructionParameters) float [source]#
Find the best CoR for this slice by maximising the squared sum of the reconstructed slice.
Larger squared sum -> bigger deviance from the mean, i.e. larger distance between noise and data
- static full(images: ImageStack, cors: list[ScalarCoR], recon_params: ReconstructionParameters, progress: Progress | None = None) ImageStack [source]#
Performs a volume reconstruction using sample data provided as sinograms.
- Parameters:
images – Array of sinogram images
cors – Array of centre of rotation values
proj_angles – Array of projection angles
recon_params – Reconstruction Parameters
progress – Optional progress reporter
- Returns:
3D image data for reconstructed volume
- static single_sino(sino: ndarray, cor: ScalarCoR, proj_angles: ProjectionAngles, recon_params: ReconstructionParameters, progress: Progress | None = None) ndarray [source]#
Reconstruct a single sinogram
- Parameters:
sino – The 2D sinogram as a numpy array
cor – Center of rotation for parallel geometry. It will be converted to vector geometry before reconstructing
proj_angles – Projection angles
recon_params – Reconstruction parameters to configure which algorithm/filter/etc is used
- Returns:
2D image data for reconstructed slice
- mantidimaging.core.reconstruct.astra_recon.vec_geom_init2d(angles_rad: ProjectionAngles, detector_spacing_x: float, center_rot_offset: float) ndarray [source]#